We use cookies to ensure our website operates correctly and to monitor visits to our site. This helps us to improve the way our website works, ensuring that users easily find what they are looking for. To allow us to keep doing this, click 'Accept All Cookies'. Alternatively, you can personalise your cookie settings.

Accept All Cookies Personalise settings

Blogs

What can mosquitos teach us?

03/08/2020

An international research team has reported the development of a new collision-avoidance sensor system for drones.

What can mosquitoes teach us - close up front-view image of mosquito

This is a typical case of ‘biomimicry’, or ‘biomimetics’, where a biological phenomenon inspires a man-made solution.

The team, (which includes individuals from the University of Leeds and the Royal Veterinary College), examined the sensory mechanism in the male Culex quinquefasciatus mosquito, to understand how the insect can avoid obstacles even in total darkness. Apparently, the mosquito uses an ability known as ‘mechanosensing’, which enables it to detect changes in the airflow of its immediate environment. On the head of the insect, an array of sensors create a picture of its surroundings through so-called ‘aerodynamic imaging’; allowing it to map where the ground and other obstacles are located.

With these findings, the team outfitted a miniature quadcopter with a bio-inspired sensor – this consisted of an array of probe tubes connected to differential pressure sensors. By measuring the airflow velocities around the quadcopter, the researchers were able to place the probes in the most optimal positions for sensitivity.

After further trials, the quadcopter was allowed to fly autonomously. The unmanned air vehicle (UAV) proved it could detect surfaces at sufficient distances to avoid the ground or walls, and with minimal data processing.

Such technology would be useful for small drones operating in urban areas, both inside as well as outside buildings. It could also reduce the risk of collisions within UAV swarms, which is a current challenge. Importantly, the researchers claim their new system is lightweight, power-efficient, and scalable.