Australian submariners to breathe easier
14/03/2018
If successful, this cutting edge new technology could form part of the Australian Government’s Future Submarines Program (SEA1000), the largest and most complex military program ever undertaken in Australia. SEA1000 involves the design and construction in Adelaide of 12 highly advanced submarines with a range in excess of 33,000 kilometres and capable of operating independently for up to 80 days.
For a non-nuclear submarine those figures are already impressive. CSIRO and QinetiQ will work on making it even more so.
CSIRO Project Leader Associate Professor, Matthew Hill, said:
“Together, we’ll be testing whether advanced materials known as Metal-Organic Frameworks (MOFs) can allow submarines to remain submerged longer. MOFs have the largest internal surface area of any known substance, which can be optimised to capture gases such as carbon dioxide (CO2). The more CO2 MOFs can capture and store, the longer a submarine can potentially remain underwater, undetected.”
QinetiQ Australia Managing Director Greg Barsby added:
“If proven, MOFs could give Australian submarines an edge: a performance advantage that lets them dive longer while placing less demand on a submarines precious space and weight, as well as critical systems such as power. We’re focused on creating real capability gains for the Australian Defence Forces. This project plays to both partners’ strengths, our decades of experience and expertise in submarine operations and atmospheres; plus CSIRO’s unmatched and patented ability to make MOFs in large volumes, cheaply and with great precision.”
As submarines are an enclosed space, CO2 expelled by the crews’ breathing and other chemical processes builds up and can eventually become toxic. Carbon dioxide scrubbers avoid that, by removing CO2 from a submarine’s atmosphere and storing it for later release.
Current CO2 scrubbers though take up a large amount of the limited space, weight and power available in submarines. They can also generate corrosive by-products, which have both health and sustainment implications in the close confines of a submarine.
A MOFs based system would use a smaller amount of space, place less demands on a sub’s systems and wouldn’t rely on damaging gases.
It could also be incorporated into existing submarines such as Australia’s current Collins class to extend their operational life and capabilities.
For further information, please contact: Sarah Roberson, Marketing and Communications Manager, +61 476 816 174, SRoberson@QinetiQ.com.au
Other News
-
QinetiQ US Awarded Advanced Research, Technology, and Integration Support Contract with U.S. Army C5ISR Research and Technology Integration Directorate
25 Apr 2023
-
QinetiQ Group plc Fourth Quarter Trading Update
17 Apr 2023
-
Major new five-year £22m contract agreed between Aurora Engineering Partnership and DE&S
13 Apr 2023
-
QinetiQ announces £259 million renewal of Maritime Strategic Capability Agreement
05 Apr 2023
-
QinetiQ Australia partners with DSTG to manufacture high energy laser system
04 Apr 2023